Search results for "excitation energy"

showing 4 items of 4 documents

Oscillator Strengths of Electronic Excitations with Response Theory using Phase Including Natural Orbital Functionals

2013

The key characteristics of electronic excitations of many-electron systems, the excitation energies ωα and the oscillator strengths fα, can be obtained from linear response theory. In one-electron models and within the adiabatic approximation, the zeros of the inverse response matrix, which occur at the excitation energies, can be obtained from a simple diagonalization. Particular cases are the eigenvalue equations of time-dependent density functional theory (TDDFT), time-dependent density matrix functional theory, and the recently developed phase-including natural orbital (PINO) functional theory. In this paper, an expression for the oscillator strengths fα of the electronic excitations is…

Density matrixta114Chemistryexcitation energytiheysfunktionaaliteoriaGeneral Physics and AstronomyTime-dependent density functional theoryelektronitAdiabatic theoremMatrix (mathematics)Quantum mechanicsExcited stateDensity functional theoryeigenvalues and eigenfunctionsPhysical and Theoretical ChemistryAdiabatic processEigenvalues and eigenvectorsJournal of Chemical Physics
researchProduct

First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

2015

Physics letters / B 744, 137 - 141 (2015). doi:10.1016/j.physletb.2015.03.047

Nuclear reactionNuclear and High Energy PhysicsISOBAR SEPARATIONPROJECTILESpatial isomer separationMass spectrometry530Ion211Po ionsPo-211 ionsCRYOGENIC STOPPING CELLPhysics::Atomic and Molecular ClustersIsomeric ratioFACILITYddc:530Physics::Chemical PhysicsSpectroscopyNuclear ExperimentFRAGMENTSPhysicsExcitation energyta114Multiple-reflection time-of-flight mass spectrometerPERFORMANCEIsotope separation in flightlcsh:QC1-999IsomerFRS-ESRTime of flightSTATESEXOTIC NUCLEIMass spectrumIsomeric beamAtomic physicsGround stateSYSTEMExcitationlcsh:Physics
researchProduct

Low energy reactions with radioactive ions at REX-ISOLDE-the 9Li + 2H case

2005

19 pages, 12 figures, 2 tables.-- PACS nrs.: 25.60.-t; 25.45.-z; 27.20.+n.-- et al. ISOLDE Collaborattion and REX-ISOLDE Collaboration.

PhysicsNuclear and High Energy PhysicsExcitation energyC3D6 targetRex-Isolde post-acceleratorIonNuclear physicsLow energyDeduced reaction channelsDeuteriumReaction radioactiveDSSSD detectorAtomic physicsBeam (structure)Radioactive beam
researchProduct

Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I

2000

AbstractUltrafast dynamics of a reconstituted Lhca4 subunit from the peripheral LHCI-730 antenna of photosystem I of higher plants were probed by femtosecond absorption spectroscopy at 77 K. Intramonomeric energy transfer from chlorophyll (Chl) b to Chl a and energy equilibration between Chl a molecules observed on the subpicosecond time scale are largely similar to subpicosecond energy equilibration processes within LHCII monomers. However, a 5 ps equilibration process in Lhca4 involves unique low energy Chls in LHCI absorbing at 705 nm. These pigments localize the excitation both in the Lhca4 subunit and in LHCI-730 heterodimers. An additional 30–50 ps equilibration process involving red …

Time-resolved spectroscopyPhotosystem I0106 biological sciencesAbsorption spectroscopyPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiophysicsPhotochemistryPhotosystem I01 natural sciences7. Clean energyBiochemistryFluorescence spectroscopyLight-harvesting complexExcitation energy transfer03 medical and health scienceschemistry.chemical_compoundStructural BiologyUltrafast laser spectroscopyGeneticsMolecular BiologyPlant Proteins030304 developmental biology0303 health sciencesPhotosystem I Protein ComplexSpectrophotometry AtomicPigments BiologicalCell BiologyPlantsLHCI-730 heterodimerEnergy TransferchemistryAntennaChlorophyllPicosecondChlorophyll Binding ProteinsLight-harvesting complexTime-resolved spectroscopyDimerization010606 plant biology & botanyFEBS Letters
researchProduct